umFish30.DLL v3.0 Funktions-Übersicht

28.05.03 - 32

Notes and Overviews to

umFish30.DLL

Ulrich Müller

[image: image1.wmf]
Content

2Content

Survey of the umFish30.DLL Functions
3
The Access to the Interface
4
umFish30.DLL v3.0 : Declarations and Functions.
5
um style
5
cs style
8
Visual Basic 6
11
FishFa30 with class FishFace
11
VC++
17
C++Builder 4
17
FishFa30 and class TFishFace
17
Delphi 4
23
.NET : FishFa30 with class FishFace
24
Notes to the Control Block
30
Notes to the Counters
30
Notes to the Speed Control
30
Notes to the Rob Functions
31

Copyright © 1998 – 2003 for Software and Dokumentation :

Ulrich Müller, D-33100 Paderborn, Lange Wenne 18. Fon 05251/56873, Fax 05251/55709
eMail : UM@ftComputing.de

HomePage : www.ftComputing.de
Freeware : A private – not commercial – use is permitted without a fee.
Liability : Software and dokumentation are made with concientiousness, but there is no liablilty for it.

Dokument : umFish30NotesE.doc, Druckdatum : 28.05.03
Survey of the umFish30.DLL Functions

umFish30.DLL is a DLL written in VC++ 6.0 (32bit). It enables access to the fischertechnik parallel interfaces 30 520, 30 566 and the CVK (Cornelsen Interface). Master/Slave running is possible. And the serial interface 30 402 (with extension module 16 554). Therefore som basic functions are supplied to be used from many programming languages.

umFish30.DLL offers to equivalent sets of access functions :

· the um style-Variante with direct access to the control block used bei umFish30.DLL.

· and the cs style, in this case the access to the control block is capsulated by dedicated functions.

um style is more versatile, cs style can be used with programming languages, which have problems with a structure as parameter.

There are different sets of simple declarations for different languages in um style :

· Visual Basic : umFish.BAS

· VC++ : umFish30VC.H and umFish30.LIB (for VC++6.0, older versions : umFish30Load.H)

· C++Builder : umFish30Load.H (dynamic load of the DLL)

· Delphi : umFish30.PAS

Beside this classes are offered, which extend the functionality of umFish30.DLL :

· Visual Basic : FishFa30 and more. Contained in vbFish30Setup.EXE.

· C++Builder : FishFa30.H/CPP

· Delphi : FishFa30.PAS. Contained in delphiFish30.Setup.EXE.

· C# : FishFa30.CS

· VB.NET : FishFa30.DLL (the Assembly of FishFa30.CS)

The classes offer a common functionality. The differences caused by the differences of the programming languages are unified so far as possible. All languages offer the function NotHalt (Emergency exit) and the ESC key to abort running methods (umFish30.DLL doesn't do it). The class files are contained in umFish30.ZIP (not for VB : vbFish30Setup.EXE and Delphi : delphiFish30Setup.EXE).

The next chapters will decribe there functions in detail.

The Access to the Interface

The access to the interface is done indirect via a poll routine. That routine reads out in constant distances the values of the interface and writes in the same turn the status of the outputs (M-Outlets). That fullfills the refresh conditions of the interface, which must be contacted in interval of 300 msec. Therfore the is no switch off of the interface in times of inactivity of the program. To have a constant time base of typical 10 msec the MultMediaTimer is used. The poll routine triggered by him is running in a separate thread.

The values read out by the poll routine are stored in a control block and vice verse the value for the outputs are read from there. The control block contains in addition all values used for running the interface (a slave included). The simultan running of several interfaces therefore is possible.

The poll routine does beside the pure control of the interface some more services. That are counting impulses on the inputs (changing from true to false or false to true) and controlling the "speed" of the outputs (done by PWM Pulse Wide Modulation). Running in Rob Mode single outputs are switched off, if the impulse counter belonging to that output reaches 0. Short time before the output is slowed down.

The offered access functions are a mix from necessity and comfort. Open/CloseInterface makes a connection to the interface (or ends it), is setting default values (especially for the poll interval) and will start the MultiMediaTimer. The GetInput/GetAnalog function reads out the input value from the control block belonging to the input called. Same is done by SetMotor / SetLamp in the opposite direction. There is no direct acces to the interface.

GetAnalogDirect makes an exception. It accesses the analog input direct, in that time the poll routine is stopped. Reason : the read out of the analog values (especially with the parallel interface) will last much longer than a normal poll interval for read/write the digitalinputs/outputs only. Using the this function you can run the program with a much shorter poll interval and only at time the motors are stopped (recommended) you access the analog inputs.

SetMotor(s)Ex and RobMotor(s) don't access the interface direct, but do more sophisticated function.

Using the um style functions, the more complex functions can be done via direct access to the control block too.

Some programming languages will do hard with using a static structure in connection with a DLL

umFish30.DLL v3.0 : Declarations and Functions.

The describtion uses a C/C++ notation. For use with a single language specific declaration files are supported in umFish30.ZIP. Depending on the effort of the language using the um or cs style. A little example program is included too.

um style

uses an static control block for umFish30.DLL in the data area of the application.

the um style is the more versatile solution because of all parameter can be accessed directly. But it only can be used with languages which allow static structures (for exsample VB.NET / C# doesn't do it).

typedef struct {

HANDLE hCom
Handle for the COM- / LPT-Port, is set when open is OK, set to 0 if closed. Should not be changed.

DWORD PortID
LPT only, I/O address of the LPT Port, Set by OpenInterface.

DWORD LPTDelay
Output Delay on the LPT Port. OpenInterface default = 10, can be changed before OpenInterface. Faster computer larger values,
operation with LPT1-3.

DWORD LPTAnalog
Scaling the analog value, OpenInterface default = 5. Can be changed before OpenInterface. The value range shhould be between 0 – 1024. (LPT1/3). LPT uses it for the upper value, not uses with COM.

DWORD Ecount
Number of digital inputs (E-Inputs). Default = 8 (no slave) = 16 with slave.

DWORD FID
Handle MultiMediaTimer. Not to be changed.

DWORD PollInterval
Interval of the MM-Timers (msecs). Default setting by OpenInterface (if = 0 or to small) :
COM : no slave = 10, with slave = 12, with analogscan = 16 (with/without slave)
LPT : 1, with analogscan = 100
Attention : if values are too small, the computer can hang up.

DWORD AnalogScan
read out of the analog inputs by the poll routine (default = 0, read = 1).

DWORD OutputStatus
Actual state of all outputs. Internal use.

DWORD MotorStatus
Nominal state of all outputs. 2 bit for each output, starting with 0-1 for M1 (00 = ftiOff, 01 = ftiLeft, 10 = ftiRight).

DWORD SpeedStatus
Speed state of all outputs. 4 bit for each output, starting with 0-3 for M1.
Values 0000 – 1111 (ftiFull).

DWORD ModeStatus
State of the operating modes of all outputs, 4 bit for each output, starting with 0 – 3 for M1. Values 0000 normal – 0001 Rob Mode.

DWORD intern

DWORD InputStatus
State of all inputs. 1 bit for each input, starting with 0 for E1 (1 = true, 0 = false).

DWORD Analogs[2]
Value of the analog inputs (0 = EX, 1 = EY)

DWORD Counters[16]
Impulse counter on the inputs.

} ftiDCB;

The control block is a structure of 32 bit words situated in the application. Using one control block for each interface (or pair interface with slave) a simlutaneous running some interfaces is possible. A simultaneous runnig of two "LPT" (LPT1/3 : 3) interface is possible. Look for the notice in umFish30E.TXT.

Used Variable Names

AnalogNr
Number of an analog input (EX = 0, EY = 1)

Direction
Revolving direction of a motor (00 = ftiOff, 01 = ftiLeft, 10 = ftiRight)
Left is the direction clicking an "L" on the interface panel.

ICount
Position count, counted in number of impulses (true/false or false/true), started on the actual position. value without sign, direction is noted separate.

InputNr
Number of a digital input (1 – 8(16))

LampNr
Number of a "half"-output (1-8(16))

MotorNr
Number of an output (1-4(8))

MotorStatus
Normal state of all outputs, look to the control block.

OnOff
Means true/false, but values (1-0)

PortName
Name of the choosen port (LPT, COM1-8, LPT1-3)

Speed
Speed running an output (0-15(ftiFull))

SpeedStatus
Speed of all outputs, look to the control block.

All variables have the type DWORD (32bit, unsigned).

Functions

DWORD
umOpenInterface(ftiDCB &Interface, LPCSTR PortName)
Setting of parameters, setting up the connection to the interface.

DWORD
umCloseInterface(ftiDCB &Interface)
Close the connection to the interface

DWORD
umGetVersion()
read the umFish30.DLL version.

DWORD umGetAnalogDirect(ftiDCB &Interface, DWORD AnalogNr);
Direct read of analog inputs EX/EY, polling is stopped for this time.

BOOL
umGetInput(ftiDCB &Interface, DWORD InputNr)
Read the value of a digital input.

DWORD
umSetMotor(ftiDCB &Interface, DWORD MotorNr, DWORD Direction)
Write an output

DWORD
umSetMotorEx(ftiDCB &Interface, DWORD MotorNr,
 DWORD Direction, DWORD Speed)
Write an output, speed included.

DWORD umSetMotors(ftiDCB &Interface, DWORD MotorStatus)
Write all outputs.

DWORD umSetMotorsEx(ftiDCB &Interface, DWORD MotorStatus, DWORD SpeedStatus)
Write all outputs, speed included. For MotorStatus / SpeedStatus look to the notice for the Rob Functions.

DWORD
umSetLamp(ftiDCB &Interface, DWORD LampNr, DWORD OnOff)
Write a "half" output.

DWORD umRobMotor(ftiDCB &Interface, DWORD MotorNr, DWORD Direction,
 DWORD Speed, DWORD ICount)
Write an output in Rob Mode.

DWORD umRobMotors(ftiDCB &Interface, DWORD MotorStatus, DWORD SpeedStatus, DWORD ModeStatus)
Write all outputs, choice of the Mode included.

DWORD
umStartDriver()

DWORD
umStopDriver()

cs style

This version uses internally control blocks. The OpenInterface returns a handle to the actual one (CloseInterface frees it). This handle is used by all other function as a parameter instead of the control block. In cs style the number of functions is larger because of there is no direct possibility to access the control block.

The cs style is ought to be used with programming languages which can't operate with static structures. But it can be used with all programming languages, if it seems nicer to use it. A mix of both styles is not possible.

Verwendete Variablenbezeichnungen

AnalogNr
Number of an analog input (EX = 0, EY = 1)

CounterNr
Number of an impulse counter (1-8(16))

Direction
Revolving direction of a motor (00 = ftiOff, 01 = ftiLeft, 10 = ftiRight)
Left is the direction clicking an "L" on the interface panel.

ICount
Position count, counted in number of impulses (true/false or false/true), started on the actual position. Value without sign, direction is noted separate.

iHandle
Handle for the internal control block

InputNr
Number of a digital input (1 – 8(16))

InputStatus
State of all ditigal inputs. 1 bit for each input, start with 0 for E1 (1 = true, 0 = false).

LampNr
Number of a "half" output (1-8(16))

Mode
Operating mode of an output (0 : normal, 1 : RobMode)

ModeStatus
State of the operating modes of all outputs, 4 bit for each output, starting with 0 – 3 for M1. Values 0000 normal – 0001 RobMode.

MotorNr
Number of an output (1-4(8))

MotorStatus
Nominal state of all outputs. 2 bit for each output, started with 0 – 1 for M1 (00 = ftiOff, 01 = ftiLeft, 10 = ftiRight).

OnOff
Means true/false, but values (1-0)

PortNr
Number of the choosen port (0-11 : LPT, COM1-8, LPT1-3)

Speed
Speed running an output (0-15(ftiFull))

SpeedStatus
Speed of all outputs. 4 bit for each output, starting with 0-3 for M1, values 0000 – 1111 (ftiFull).

Value
32bit value

All variables have the type DWORD (32bit, unsigned).

Funktionen

iHandle
csOpenInterface(int PortNr, int AnalogScan, int Slave, int PollInterface);
Setting of parameters, setting up the connection to the interface. Returns a handle (or ftiFehler), used by all other functions to identify the internal control block.
AnalogScan = 0 without, = 1 Scan of the analog inputs,
Slave = 0 ohne, = 1 mit Slave Modul,
PollInterval = 0 OpenInterface will use an default value, > 0 value to be used.

iHandle
csOpenInterfaceEx(int PortNr, int AnalogScan, int Slave, int PollInterface,
int LPTAnalog, int LPTDelay);
like csOpenInterface but with additional parameters operating the parallel interface directly with LPT1-3.
LPTAnalog = 0 OpenInterface will use an default value, > 0 value to be used,
LPTDelay = 0 OpenInterface will use an default value, > 0 value to be used.

int
csCloseInterface(int iHandle);
Close the connection to the interface.

int
csVersion();
REad the umFish30.DLL version.

int
csGetAnalogScan(int iHandle);
Read Scanning of the analog inputs is true (0 = false, 1 = true)

int
csGetLPTAnalog(int iHandle);
Read analog scaling

int
csGetLPTDelay(int iHandle);
Read output delay.

OnOff
csGetSlave(int iHandle);
Read slave is available

int
csGetPollInterval(int iHandle);
Read PollInterval (msecs).

OnOff
csGetInput(int iHandle, int InputNr);
Read the value of a digital input.

int
csGetInputs(int iHandle);
Read all digital input values.

int
csGetAnalog(int iHandle, int AnalogNr);
Read the value of a analog input.

int
csGetAnalogDirect(int iHandle, int AnalogNr);
Read direct a analog EX/EY, polling is stopped for that time.

int
csSetMotor(int iHandle, int MotorNr, int Direction);
Write an output.

int
csSetMotorEx(int iHandle, int MotorNr, int Direction, int Speed);
Write an output, speed is included.

int
csGetMotors(int iHandle);
Read all outputs.

Mode
csGetModeStatus(int iHandle, int MotorNr);
Read the mode of an output.

void
csSetModeStatus(int iHandle, int MotorNr, int Mode).
Write the mode of an output

int
csSetMotors(int iHandle, int MotorStatus);
Write all outputs

int
csSetMotorsEx(int iHandle, int MotorStatus, int SpeedStatus)
Write all outputs, speed ist included. See also Notes for RobFunctions.

int
csSetLamp(int iHandle, int LampNr, int OnOff);
Write a "half" output.

int
csRobMotor(int iHandle, int MotorNr, int Direction, int Speed, int ICount);
Write an output if in RobMode

int
csRobMotors(int iHandle, int MotorStatus, int SpeedStatus, int ModeStatus);
Write all outputs, mode can be choosen. The Counterss belonging to the outputs are to be set before this function.

int
csGetCounter(int iHandle, int CounterNr);
Read an impulse counter.

void
csSetCounter(int iHandle, int CounterNr, int Value);
Write an impulse counter.

void
csClearCounters(int iHandle);
Clear all impulse counters.

Visual Basic 6

For Visual Basic are available the the simple umFish30.BAS declarations (contained in umFish30.ZIP) and the class FishFa30.CLS (compiled version : FishFa30.DLL). umFish30.BAS used the um style to access umFish30.DLL(description above). FishFa30.CLS is contained in vbFish30Setup.EXE. An detailed manual and tutorial is there too. On this place a short description of the FishFa30.CLS functions.

FishFa30 with class FishFace

Some general notes to ist construction

· There are no return code but error exceptions. The most common are Err.Raise 30001 (InterfaceProblem) and 30002 (KeinOpen / open missing). With Err.Source = "FishFace.method" and Err.Text = "Interface Problem" / "KeinOpen". They come with most of the methods. The application now must use On Error Goto xxError and the label xxError:

· with german help file and manual.

· NEW : OpenInterface(PortName$, AnalogScan, Slave, PollInterval, LPTAnalog, LPTDelay). Paramater beginning with AnalogScan are optional. Reason : the VB constructor has no parameters.

· Contains the Enums ftiDir, ftiNr, ftiSpeed, ftiWait. VB allows constants without leading Enum name. Alternatively Long values are possible.

· Internally the um style of umFish30.DLL is used.

· Instead of overload optional parameters with default values are used (mostly 0, sometimes ftiFehler).

· Counter numbers are according the input numbers from 1 to 16.

· vbFish30Setup.EXE comes with some additional classes.

Enums

ftiDir
Revolving direction ...

ftiNr
Symbolic number of inputs/outputs

ftiSpeed
Speed values

ftiWait
Return values for WaitForMotors

The use of Long values is possible to.

Properties

bool
AnalogScan (get)
Scan of the analog inputs
(default = False)

int
AnalogsEX(get)
Read EX value

int
AnalogsEY(get)
Read EY value

int
Inputs(get)
Read all digital inputs

int
LPTAnalog(get)
Read analog scaling

int
LPTDelay(get)
Read output delay

bool
NotHalt (get/set)
Request for abort (default = False)

int
Outputs(get)
Read all outputs

int
PollInterval (get)
Interval (msecs) to read / write the interface parameters (polling).

bool
Slave (get)
Read Use of extension module

string
Version (get)
Read DLL/CLS version

Used variable names

The variables mostly have an enum as type, but long values can be used in the same manner. Here the enum are used to give a description of it's value range.

AnalogNr
Number of the analog input(ftiNr)

Analogwert
Return value when read EX / EY (0 – 1024)

Counter
Value of an impulse counter (Long)

Direction
Revolving direction of a motor (ftiDir)

InputNr
Number of a digital input (ftiNr)

InputStatus
Return value of all digital inputs (0 - &HFFFF)

LampNr
Number of a "half" output (ftiNr, M1 – M16)

ModeStatus
State of the operating modes of all outputs, 4 bit for each output, starting with 0 – 3 for M1. Values 0000 normal – 0001 RobMode.

MotorNr
Number of an output (ftiNr)

MotorStatus
State of all outputs. 2 bit for each output, started with 0 – 1 for M1
(00 = ftiOff, 01 = ftiLeft, 10 = ftiRight).

mSek
Time in msecs (Long)

NrOfChanges
Number of impulses (Long)

OnOff
Switch On/Off of an output (Boolean)

PortName
Name of the used Port (String)

Position
Position value in impulses (Long)

Speed
Speed running an output (ftiSpeed)

SpeedStatus
Speed of all outputs. 4 bit for each output, starting with 0-3 for M1, values 0000 – 1111 (ftiFull).

TermInputNr
 Number of an input which terminates the method (ftiNr)

WaitWert
Return value of ForMotors (Long, ftiWait)

Value
32 bit value.

The parameter are ByVal (Exception : WaitForPosition : Counter is ByRef). There are some optional parameter which change the function of the method in a significant manner.

Methods

Sub
ClearCounter(InputNr As ftiNr)
Clear (0) of the mentioned counter

Sub
ClearCounters()
Clear (0) of all counters

Sub
ClearMotors()
switch off all outputs

Sub
CloseInterface()
Close the connection to the interface

Boolean
Finish(InputNr As ftiNr)
Request for an cancel (NotHalt, Escape, InputNr(optional))

Analogwert
GetAnalog(AnalogNr As ftiNr)
Read Ex / EY

Analogwert
GetAnalogDirect(AnalogNr As ftiNr)
Direct read of the EX/EY values. For this time polling is stopped. Makes sense if all motors are stopped. In this case the PollInterval can reduced to the smaller values of polling without AnalogScan.

Long
GetCounter(InputNr As ftiNr)
Read the value of the listed counter

Boolean
GetInput(InputNr As ftiNr)
Read the value of the listed digital input

InputStatus
GetInputs()
Read the values of all digital inputs

Sub
OpenInterface(PortName As String, AnalogScan As Boolean,
Slave As Boolean, PollInterval As Long,
LPTAnalog As Long, LPTDelay As Long)
Setting of parameters, setting up the connection to the interface. Besides PortName all parameters are optional. OpenInterface will run in this case with default values :
AnalogScan : default False
Slave : default False
PollInterval : default 0, internally, depending on AnalogScan, Slave, a practicable value is determined. It can be read after OpenInterface succeded.
LPTAnalog, LPTDelay : default 0 will be change to a practicable value.

Sub
Pause(mSek As Long)
Halt the program for the listed msecs.

Sub
SetCounter(InputNr As ftiNr, Value As Long)
Set the counter InputNr to Value.

Sub
SetLamp(LampNr As ftiNr, OnOff As Boolean)
Set a "half" output (one pin on output, one to ground).

Sub
SetMotor(MotorNr As ftiNr, Direction As ftiDir, Speed As ftiSpeed, Counter As ftiNr)
Setting an output. Optional with speed and the number of impulses to run.

Sub
SetMotors(MotorStatus As Long, Speedstatus As Long, ModeStatus As Long)
Set the state of all outputs. Optional with speed, operation mode. In operation mode = RobMode, the addressed counter are to be set before (SetCounter).

Sub
WaitForChange(InputNr As ftiNr, NrOfChanges As Long, TermInputNr As ftiNr)
Wait for NrOfChanges impulses on input InputNr. Alternatively terminated with TermInputNr = True

Sub
WaitForHigh(InputNr As ftiNr)
Wait for a False/True signal on InputNr.

Sub
WaitForInput(InputNr As ftiNr, OnOff As Boolean)
Wait for InputNr = OnOff. OnOff is optional (default = True)

Sub
WaitForLow(InputNr As ftiNr)
Wait for a true/false signal on InputNr

WaitWert
WaitForMotors(Time As Long, MotorNr As ftiNr ...)
Wait for a motor-ready event or a timeout
A motor-ready event is startet with SetMotor and parameter Counter and is raised if Counter is 0.
Time = 0 : unlimeted wait.
res = ftiWait.ftiEnde : all Counter = 0 (included switch off by an end switch)
res = ftiWait.ftiTime : timeout
res = ftiWait.ftiNotHalt : canceld by NotHalt.
res = ftiWait.ftiESC : canceled by Escape-Key
On ftiNotHalt and ftiESC all involved motors are stopped.

Sub
WaitForPositionDown(InputNr As ftiNr, ByRef Counter As Long, Position As Long, TermInputNr As Long)
Wait for coming up to the noted position (Counter). Starting on the actual position and decreasing the counter by the notified impulses.
TermInputNr (Optional) = True : method ends when reaching the end switch.

Sub
WaitForPositionUp(InputNr As ftiNr, Counter As Long, Position As Long, TermInputNr As ftiNr)
Wait for coming up to the noted position (Counter). Starting on the actual position and increasing the counter by the notified impulses
TermInputNr (Optional) = True method ends when reaching the end switch.

Sub
WaitForTime(mSek As Long)
Halt the program for the listed msecs.

The methods only can work, if an OpenInterface is precided. Othewise an exception is raised (Err.Raise). The methods mostly contain an DoEvents to make the program interruptable. If an InterfaceProblem is stated, an exception is raised. The Wait methods will reset their counter is that case.

The SetMotor(s) methods are asynchron. That means motors (or lamps) are started by the methods and will run independend of the program. they are stopped by an SetMotor with Direction = ftiOff. Exception : SetMotor with parameter Counter will end, when reaching the enumered position or the end switch.

The Wait methods obtain – mostly in context with end and impulse switches - the asynchron running of the motors. They are stopping the program until their goal (timeout, position, end switch) is reached. That means they synchronize the program.

VC++

VC++ can operate umFish30.DLL with the um style and the cs style interface. Description above. The declarations are contained in umFish30VC.H. Some simple exsamples are included.

The source for umFish30.DLL itself are included too. The source for operating the WinRT.SYS driver is dropped by means of license.

C++Builder 4

umFishLoad.H is a declaration file with dynamic load based on the um style interface (description see above). The more sophisticated functions are contained in the unit FishFa30.H/CPP with the class TFishFace and some additional functions. TFishFace can be used with GUI (VCL) applications, C++Builder version 4 and higher. FishFa30 must be added to the project and included by #include "FishFa30.h".

uint means unsigned int.

FishFa30 and class TFishFace

Enums

Dir
Revolving direction

Nr
Number of an input or output

Speed
Speed value (1 – 15)

Wait
Return values of WaitForMotors

The numerical values for the enums can be used as well.

Constructor

· FishFace()

With default values for AnalogScan = false, Slave = false,
PollInterval = 0, LPTAnalog = 0, LPTDelay = 0

· FishFace(bool AnalogScan, bool Slave, uint PollInterval)
PollInterval = 0 means OpenInterface will set a practicable value
PollInterval > 0 this value is used by OpenInterface
LPTAnalog = 0, LPTDelay = 0

· FishFace(bool AnalogScan, bool Slave, uint PollInterval,
uint LPTAnalog, uint LPTDelay)
PollInterval = 0 means OpenInterface will set a practicable value
LPTAnalog = 0 OpenInterface will set the value, >0 OpenInterface will use it.
LPTDelay = 0 OpenInterface will set the value, >0 OpenInterface will use it.

Eigenschaften

bool
AnalogScan (read)
Scan of the analog inputs (default = false)

uint
AnalogsEX (read)
Read EX value

uint
AnalogsEY (read)
Read EY value

uint
Inputs (read)
Read all digital inputs

uint
LPTAnalog(read)
Read analog scaling

uint
LPTDelay(read)
Read output delay

bool
NotHalt (read/write)
Request for abort (default = false).

uint
Outputs (read)
Read all outputs

uint
PollInterval (read)
Interval (msecs) to read / write the interface parameters (polling).

bool
Slave (read)
Read use of extension module

uint
Version (read)
Read version of the unit.

Used variable names

The variables have the type unsigned int.

AnalogNr
Number of the analog input (Nr)

Counter
Value of an impulse counter (int)

Direction
Revolving direction of a motor (Nr)

InputNr
Number of a digital input (Nr)

LampNr
Number of a "half" output (Nr, 1 – 8(16))

ModeStatus
State of the operating modes of all outputs, 4 bit for each output,
starting with 0-3 for M1. Values 0000 normal – 0001 RobMode.

MotorNr
Number of an output (Nr)

MotorStatus
State of all outputs. 2 bit for each output, starting with 0-1 for M1
(00 = ftiOff, 01 = ftiLeft, 10 = ftiRight).

mSek
Time in msecs (int).

NrOfChanges
Number of impulses (int)

OnOff
Switch On/Off of an output (Dir)

PortName
Name of the use Port (LPCSTR)

Position
Position value in impulses (int)

Speed
Speed running an output (Speed)

SpeedStatus
Speed of all outputs. 4 bit for each output, starting with 0-3 for M1, values 0000 – 1111 (Speed)

TermInputNr
Number of an input which terminates the method (Nr)

Value
32 bit value

Methods

Using the methods, an OpenInterface must preceed. Mostly they contain an Application->ProcessMessages(); to make the application interruptable in narrow loops.

Most of the method raises an exception when detecting an "InterfaceProblem" or an "KeinOpen" (no open preceeded), which can be catched with an TFishFaceException construct.

void
ClearCounter(uint InputNr)
Clear (0) of the mentioned counter

void
ClearCounters()
Clear (0) of all counters

void
ClearMotors()
Switch off all outputs

void
CloseInterface()
Close the connection to the interface

bool
Finish(uint InputNr)
Request for an cancel (NotHalt, Escape, InputNr(optional))

uint
GetAnalog(uint AnalogNr)
read Ex / EY

uint
GetAnalogDirect(uint AnalogNr)
Direct read of the EX/EY values. For this time polling is stopped. Makes sense if all motors are stopped. In this case the PollInterval can be reduced to the smaller values of polling without AnalogScan.

uint
GetCounter(uint InputNr)
Read the value of the listed counter.

bool
GetInput(uint InputNr)
Read the value of the listed digital input

uint
GetInputs()
Read the values of all digital inputs

void
OpenInterface(LPCSTR PortName[, bool Messages=true])
Setting of parameters, setting up the connection to the interface.
PortName : LPT, COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, LPT1, LPT2, LPT3
Message : Use of Application.ProcessMessages within the methods to make the GUI interruptable. Not required in Threads.

void
Pause(uint mSek)
Halt the program for the listed msecs.

void
SetCounter(uint InputNr, uint Value)
Set the counter InputNr to Value

void
SetLamp(uint LampNr, bool OnOff)
Set a 'half' output (one pin on output, one to ground).

void
SetMotor(uint MotorNr, uint Direction, uint Speed, uint Counter)
Setting an output. Optional with speed and the number of impulses to run (Counter).

void
SetMotors(uint MotorStatus, uint Speedstatus, uint ModeStatus)
Set the state of all outputs. Optional with speed, operation mode.In operation mode = RobMode, the addressed counter are to be set before (SetCounter).

void
WaitForChange(uint InputNr, uint NrOfChanges, uint TermInputNr)
Wait for NrOfChanges impulses on input InputNr. Alternatively terminated with TermInputNr = true;

void
WaitForHigh(uint InputNr)
Wait for a false/true signal on InputNr.

void
WaitForInput(uint InputNr, bool OnOff)
Wait for InputNr = OnOff. OnOff is optional (default = true):

void
WaitForLow(uint InputNr)
Wait for a true/false signal on InputNr.

res
WaitForMotors(uint Time, uint MotorNr ...)
Wait for a motor-ready event or an timeout.
A motor-ready event is startet with SetMotor and parameter Counter and is raised if Counter is 0.
Time = 0 : unlimited wait..
res = ftiEnde : all Counter = 0 (included switch off caused by an end switch)
res = ftiTime : timeout
res = ftiNotHalt : canceled by NotHalt.
res = fitESC : canceled by Escape-Taste

On NotHalt and ESC all involved motors are stopped.

void
WaitForPositionDown(uint InputNr, uint Counter, uint Position,
uint TermInputNr)
Wait for coming up to the noted position (Counter). Starting on the actual position and decreasing the counter by the notified impulses. TermInputNr (optional) = true : method ends when reaching the end switch.

void
WaitForPositionUp(uint InputNr, uint Counter, uint Position, uint TermInputNr)
Wait for coming up to the noted postion (Counter). Starting on the actual postion and increasing the counter by the notified impulses.
TermInputNr (optional) = true : method ends wehn reaching the end switch.

void
WaitForTime(uint mSek)
Halt the program for the listed msecs.

The methods only can work, if an OpenInterface is precided. Othewise an exception is raised (Err.Raise). The methods mostly contain an DoEvents to make the program interruptable. If an InterfaceProblem is stated, an exception is raised. The Wait methods will reset their counter is that case.

The SetMotor(s) methods are asynchron. That means motors (or lamps) are started by the methods and will run independend of the program. they are stopped by an SetMotor with Direction = ftiOff. Exception : SetMotor with parameter Counter will end, when reaching the enumered position or the end switch.

The Wait methods obtain – mostly in context with end and impulse switches - the asynchron running of the motors. They are stopping the program until their goal (timeout, position, end switch) is reached. That means they synchronize the program.

Delphi 4

With Delphi the Unit umFish30.PAS (um style of umFish30.DLL) and the unit FishFa30.DCU (class TFishFace) can be used. Contained in delphiFish30Setup.EXE.

.NET : FishFa30 with class FishFace

Contained in the assembly FishFA30.DLL and the source FishFa30.CS.

To be used by C# and VB.NET (the compiled assembly FishFa30.DLL). The C# types int are noted as Integer in VB.NET and bool means Boolean.

Enums

Dir
Revolving direction

Nr
Number of an input or output

Port
List of the ports

Speed
Speed value (1-15)

Wait
Return values of WaitForMotors

The numerical values for the enums can be used as well.

Constructor

· FishFace()

With default values for AnalogScan = false, Slave = false,
PollInterval = 0, LPTAnalog = 0, LPTDelay = 0

· FishFace(bool AnalogScan, bool Slave, int PollInterval)
PollInterval = 0 means OpenInterface will set a practicable value
PollInterval >0 this value is used by OpenInterface
LPTAnalog = 0, LPTDelay = 0

· FishFace(bool AnalogScan, bool Slave, int PollInterval,
int LPTAnalog, int LPTDelay)
PollInterval = 0 means OpenInterface will set a practicable value
PollInterval >0 this value is used bei OpenInterface
LPTAnalog = 0 OpenInterface will set the value, >0 OpenInterface will use it
LPTDelay = 0 OpenInterface will set the value, >0 OpenInterface will use it.

Eigenschaften

bool
AnalogScan (get)
Scan of the analog inputs (default = false)

int
AnalogsEX (get)
Read EX value

int
AnalgosEY (get)
Read EY value

int
Inputs (get)
Read all digital inputs

int
LPTAnalog(get)
Read analog scaling

int
LPTDelay(get)
Read output delay

bool
NotHalt (get/set)
Request for abort (default = false).

int
Outputs (get)
Read all outputs

int
PollInterval (get)
Interval (msecs) to read / write the intervace parameters (polling).

 string
PortName (get)
Read the actual PortName (string)

bool
Slave (get)
Read use of extension module

string
Version (get, static)
Read version of the assembly

Used variable names

The variables are mostly of the type int. Alternatively there is an overload with enums. To describe the value range the enum names are noted here.

AnalogNr
Number of the analog input (Nr)

Counter
Value of an impulse counter (int)

Direction
Revolving direction of a motor (Dir)

InputNr
Numberof a digital input (Nr)

LampNr
Number of a 'half' output (Nr)

ModeStatus
State of the operating modes of all outputs, 4 bit for each output, starting with 0-3 for M1. Valusues 0000 normal – 0001 RobMode.

MotorNr
Number of an output (Nr)

MotorStatus
State of all outputs. 2 bit for each output, starting with 0-1 ofr M1
(00 = ftiOff, 01 = ftiLeft, 10 = ftiRight).

mSek
Time in msecs

NrOfChanges
Number of impulses (int)

OnOff
Switch On/Off of an output (Dir)

PortNr
Number of a Port (Port)

Position
Position value in impulses (int)

Speed
Speed running an output (Speed)

SpeedStatus
Speed of all outputs. 4 bit for each output, starting with 0-3 for M1, values 000 – 1111 (Speed).

TermInputNr
Number of an input which terminates the method (Nr)

Value
32 bit value

Methods

void
ClearCounter(Nr InputNr)
Clear (0) of the mentioned Counter

void
ClearCounters()
Clear (0) all Counters

void
ClearMotors()
Switch off all outputs

void
CloseInterface()
Close the connection to the interface

bool
Finish(Nr InputNr)
Request of an cancel (NotHalt, Escape, InputNr(optional))

int
GetAnalog(Nr AnalogNr)
Read Ex / EY

int
GetAnalogDirect(Nr AnalogNr)
Direct read of the EX/EY values. For this time polling is stopped. Makes sense if all motors are stopped. In this case the PollInterval can be recuced to the smaller values of polling without AnalogScan.

int
GetCounter(Nr InputNr)
Read the value of the listed counter.

bool
GetInput(Nr InputNr)
Read the value of the listed digital input

int
GetInputs()
Read the values of all digital inputs

void
OpenInterface(Port PortNr, bool DoEvents)
Setting of parameters, setting up connection to the interface
DoEvents : with/without DoEvents

void
Pause(int mSek)
Halt the program for the listed msecs.

void
SetCounter(Nr InputNr, int Value)
Set the counter InputNr to Value

void
SetLamp(Nr LampNr, bool OnOff)
Set a 'half' output (one pin on output, one to ground).

void
SetMotor(Nr MotorNr, Dir Direction, Speed Speed, Nr Counter)
Setting an output. Optional with speed and the number of impulses to run (Conuter).

void
SetMotors(int MotorStatus, int Speedstatus, int ModeStatus)
Set the state of all outputs. Optional with speed, operation mode. In Operation mode = RobMode, the addressed counter are to be set before (SetCounter)

void
WaitForChange(Nr InputNr, Nr NrOfChanges, Nr TermInputNr)
Wait for NrOfChanges impulses on input InputNr. Alternatively terminated with TermInputNr = true;

void
WaitForHigh(Nr InputNr)
Wait for a false/true signal on InputNr.

void
WaitForInput(Nr InputNr, bool OnOff)
Wait for InputNr = OnOff. OnOff is optional (default = true)

void
WaitForLow(Nr InputNr)
Wait for a true/false signal on InputNr

res
WaitForMotors(int Time, Nr MotorNr ...)
Wait for a motor-ready event on an timeout.
A motor-ready event is startet with SetMotor and parameter Counter and is raised if Counter is 0.
Time = 0 : unlimeted wait.
 res = Wait.Ende : all Counter = 0 (included switch off caused by an end schwitch)
res = Wait.Time :timeout
res = WaitNotHalt : canceled by NotHalt.
res = Wait.ESC : canceled by Escape-Key

void
WaitForPositionDown(Nr InputNr, int Counter, int Position, Nr TermInputNr)
Wait for coming up to the noted position (Counter). Starting on the actual position and decreasing the counter by the notified impulses. TermInputNr (optional) = true : method ends when reaching the end switch.

void
WaitForPositionUp(Nr InputNr, int Counter, int Position, Nr TermInputNr)
Wait for coming up to the noted position (Counter). Starting on the actual position and increasing the counter by the notified impulses. TermInputNr (optional) = true : method ends when reaching the end switch.

void
WaitForTime(int mSek)
Halt the porgram for the listed msecs.

The methods only can work, if an OpenInterface is precided. Othewise an exception is raised (Err.Raise). The methods mostly contain an DoEvents to make the program interruptable. If an InterfaceProblem is stated, an exception is raised. The Wait methods will reset their counter is that case.

The SetMotor(s) methods are asynchron. That means motors (or lamps) are started by the methods and will run independend of the program. they are stopped by an SetMotor with Direction = ftiOff. Exception : SetMotor with parameter Counter will end, when reaching the enumered position or the end switch.

The Wait methods obtain – mostly in context with end and impulse switches - the asynchron running of the motors. They are stopping the program until their goal (timeout, position, end switch) is reached. That means they synchronize the program.

Notes to the Control Block

The control block of the type ftiDCB contains the informations needed for running the fischertechnik Interface. It will be actualised in intervals determined by the PollInterval (msecs) by routines of umFish30.DLL. If several interfaces are used in the same program (e.g. one on LPT, one on COM1), each interface must have an own control block.

The control block only is used with the um style routines. The cs style routines of umFish30.DLL use a handle to an internal control block. There are some special routines to access the single values of the intern control block.

Notes to the Counters

An essential element of determining the position are the counters. There is a counter for each E-input (attention : E1 in some languages is 0 in others is 1). The counters will notify (and count) each change of the state of an input (e.g. opening or closing a switch).

The counter are part of the control block and can read from it. In cs style there are special functions. The counter are used internally be some functions (e.g. SetMotor with Counter parameter and most of the Wait methods. umFish30.DLL uses the counters only with um/csRobMotor(s)).

Notes to the Speed Control

The speed control is based on a cyclic switch on/off of the M-outputs (PWM). For that reason internally there is a list of switch commands. The speed is determined by the parameter Speed (SetMotor) and SpeedStatus (SetMotors). The speed control is located in a separate thread of umFish30.DLL which controls the motors in this manner until they are switched off by SetMotor(s).

Notes to the Rob Functions

The Rob functions are running in a special operating mode, the RobMode. In this mode the involved counters are decreased. Reaching the value 0, the motor belonging to that counter is switched off. On the last 6 impulses they will operate with half speed to have a more exact positioning. Sometime it may happen one more impulse is counted. It can determined by read the counter. Values > 0 signal a plus position. They actual position should be corrected.

Operating of a motor in RobMode uses a fix concept of wiring the motors. Each motor is associated with an end switch and an impulse switch :

Motor
End Switch
Impulse Switch

1
1
2

2
3
4

3
5
6

4
7
8

5
9
10

6
11
12

7
13
14

8
15
16

The motors turn "left". That means they run to the end switch if operated in direction ftiLeft. Motors are switched off, if they are reaching the end switch before the counter is zero.

The motors can be operated with umRobMotor/csRobMotor/SetMotor (a single motor). The parameter ICount/Counter noted the way to go in items of impulses (a true/false or false/true signal on the appropriate impulse switch). The impulse switches are decreased during polling. They can be accessed via ftiDCB.Counter or the function csGetCounter. Note Counter set by the application will be changed in this turn.

The motors can be operated all together with one function : umRobMotors / csSetMotors / SetMotors. Therefore the parameters must be prepared in the following manner :

MotorStatus : each motor 2bit, starting with M1 : bit 0 and 1.
00 : off, 01 left, 10 right.
SpeedStatus : each motor 4bit, starting with M1 : bit 0-3,
0000 off, 1000 half speed, 11111 full.
ModeStatus : each motor 4 bit, starting with M1 : bit 0-3,
0000 Normal-Mode, 0001 Rob-Mode, others free for further use.
(may be stepper motors).

Example : csRobMotors(ft, 0x9, 0xF6, 0x11);
0x means Hexa, binary : 1001 | 11110110 | 10001 -> M2 = right, speed 15, Rob-Mode, M1 = lelft, speed 6 RobMode. Other motors are off.

Before operating the motors, the counters are to be set for each involved motor.

Direction = 0 or the appropriate bit value in MotorStatus overrides the speed parameter, motor is stopped.

The motors are running simultaneously (up to 8 motors). They can be switched one after the other by umRobMotor/csRobMotor. They will started with the next polling cycle and run asynchronous (that means independent of the actions of the application) until they have reached the mentioned positon. Than they are switched off during the normal polling.

To observe, the motors reaching their position and to synchronized the application a WaitForMotors can be used. The FishFace classes own such a method. umFish30.DLL offers none.

umFish30NotesE.doc

Ulrich Müller

